
Chapter 1

Introduction

Python is both a useful all-purpose programming language and an excellent tool
for introducing the concepts of programming. In this chapter we’ll see how to
install and run Python, and also how to use the programming environment that
comes with Python. You might just skim the last few sections of this chapter
at the start and then come back to them after you have studied the material in
chapters 2 through 4. Much of the advice found here will seem more relevant
after you know a bit about programming.

1

2 CHAPTER 1. INTRODUCTION

1.1 About Python and Other Programming Lan-
guages

Although a host of science fiction movies would have it otherwise, computers
don’t think, they just follow simple instructions. Computers are not even so-
phisticated enough to understand human languages, they need their own ultra-
simple languages. In the end, the instructions that computers can follow are
things like ”Take the numbers from this memory location and that memory
location, add them together, and put result into this location.” The first pro-
gramming languages in the 1950’s were expressed in terms very similar to these.
Because it is difficult for people to think in such basic terms, computer scien-
tists have gradually learned how to create languages that humans can easily
work with, but that can be translated into the simple instructions that can be
followed by a computer. These are called programming languages. Thousands
of programming languages have been created, but a relatively small number are
in common use today. In these notes we will work with one language, called
Python that was invented in 1989 by the Dutch programmer Guido van Rossum.
Unfortunately, people don’t always get along, and in 2008 Python bifurcated
into two similar languages, Python2 and Python3 because the language devel-
opers couldn’t agree on what were mainly minor differences of syntax. In these
notes we will use Python3 and we will usually refer to the language simply as
Python.

Just to give you a sense of the variety of programming languages that are in
use, here are programs from different languages that all print to the computer
screen the result of multiplying 3 and 4:

#i n c l u d e <s t d i o . h>
int main (vo i d)
{

int x , y ;
x = 3 ;
y = 4 ;
p r i n t f (”%d\n” , x∗y) ;
return 0 ;

}

Program 1.1.1: The C programming language

1.1. ABOUT PYTHON AND OTHER PROGRAMMING LANGUAGES 3

#i n c l u d e <i o s t r eam>

u s i n g namespace s td ;
int main ()
{

int x , y ;
x = 3 ;
y=4;
cout << x∗y << end l ;
return 0 ;

}

Program 1.1.2: The C++ programming language

program Times
i n t e g e r x
i n t e g e r y
x = 3
y = 4
print ∗ , x∗y

end program Times

Program 1.1.3: Fortran

p u b l i c class Times {
p u b l i c s t a t i c vo i d main (S t r i n g [] a r g s) {

int x , y ;
x = 3 ;
y = 4 ;
System . out . p r i n t l n (x∗y) ;

}
}

Program 1.1.4: Java

Here this program is in Python:

4 CHAPTER 1. INTRODUCTION

x = 3
y = 4
print (x∗y)

Program 1.1.5: Python

Notice how much simpler this program is in Python. There are two things that
Python does differently than most programming languages:

• Most languages group statements together with some type of bracket or
connective terminology. The ”{” and ”}” symbols you see in some of these
programs are examples of this. Python uses instead the way the program
is laid out on the page. This makes Python programs easier to read.

• Most languages require the programmer to say what kind of data will be
stored in variables. In the programs above ”x” and ”y” are variables –
names attached to memory locations that will be used to store data. All
of the examples except the one in Python have statements that say that
these are ”int” or ”integer” variables. The Python system deduces this
information from the program itself; it does not require the user to specify
it.

In general, Python has less verbiage around a program and lets the programmer
concentrate on the actual instructions in the code. This helps to make Python
programs are easier to read, and, as we will emphasize many times in these
notes, readable programs are more likely to be correct.

There are two types of programming languages. In both types the program
needs to be run through a software system, because almost no one wants to
program in a language that the computer can execute directly. Compiled lan-
guages can be converted into machine code. Programs in such languages are run
through a compiler, a program that converts the compilable program into ma-
chine code. This produces an executable program – a program that runs directly
on the machine. Most of the programs you have ever run, such as Microsoft
Word or Mozilla Firefox, are compiled. The compiler is needed to produce the
executable program, after that the executable stands on its own and can even
be copied and transferred to another system; the compile is no longer needed.
Interpreted programs are not converted to machine code; instead, they are run
through a system called an interpreter that executes the program one statement
at a time in the same way a computer would if it could understand the language
the program was written in. An interpreter needs to be used every time the
program is run. Python is interpreted, though there are ways to produce stan-
dalone Python programs that can be run without an interpreter. In general
compiled programs run more efficiently (faster, using less memory) than inter-
preted programs, though machines have become so fast and memory so cheap
that for many applications this is not an important distinction.

1.1. ABOUT PYTHON AND OTHER PROGRAMMING LANGUAGES 5

Understanding programs

Learning to read programs is an important part of learning to program. You
can’t read a program the way you read a book. You should read programs
the same way a computer does. Every instruction does one of two things – it
either changes the computer’s memory, or it alters the sequence in which the
statements are executed. Consider the following portion of a program:

x = 5
i f x < 10 :

print (” sma l l ”)
else :

print (” b i g ”)

The first statement, x=5, changes the data stored in variable x (a memory
location) to 5. The next line, if x < 10: looks into the computer’s memory for
the value stored in variable x (we just set that value in the previous line, but
the system doesn’t remember this from one statement to the next. The system
doesn’t understand the program, it just follows it one instruction at a time.)
If the value in x is less than 10, the system executes the next line, which is
print(”small”); if the value in x is not less than 10, the system executes the
line following else:, which is print(”big”). Of course, you can do this in your
head if the program only has a few lines, but we will get to more sophisticated
programs quickly. When you are reading them, keep a piece of paper that
represents the computer’s memory. Each time a variable is given a value, write
it down on your paper. Walk through the program from the starting point
(you’ll see where that is in section 2.1) until you run out of instructions and you
will be executing the program the same way the computer does. This might
seem tedious, and it is. Computers are not ”smart”, they are just fast and
persistent. They don’t get bored. Computers do sophisticated things by doing
many, many simple instructions very, very quickly. In this course you will learn
to write these instructions in ways that will reliably get the computer to do the
things you want.

